I. Quadratic Function (p.611):

1. $f(x)=\mathrm{a} \boldsymbol{x}^{2}+\mathrm{b} \boldsymbol{x}+\mathrm{c} \quad$ General Form / p. 617
2. Graph is a "parabola" opening...

upward if $\mathrm{a}>0$ and downward if $\mathrm{a}<0$
Vertex is "turning" point where the parabola is intersected by the (vertical) line of symmetry, $\boldsymbol{x}=\frac{-\mathrm{b}}{2 \mathrm{a}}$
3. $f(x)=\mathrm{a}(\boldsymbol{x}-\mathrm{h})^{2}+\mathrm{k} \quad$ Standard Form / p. 614

Vertex @ (h, k) where $\mathrm{h}=-\mathrm{b} /(2 \mathrm{a}) \& \mathrm{k}=f(\mathrm{~h})$ min $/ \max$

II. Examples (pp.625-626): Exercises \#2-16(even)

III. Graphing a Quadratic Function:

1. Find and plot the Vertex (h, k)

$$
\mathrm{h}=-\mathrm{b} /(2 \mathrm{a}), \mathrm{k}=f(\mathrm{~h})
$$

2. Identify direction of opening via the coefficient "a"
3. Determine the \boldsymbol{x} - and \boldsymbol{y}-intercepts by solving $f(\boldsymbol{x})=0$ \& finding $f(0)$ respectively
4. Plot enough $(\boldsymbol{x}, \boldsymbol{y})$-coordinate pairs to recognize the shape of the "parabola" (opens up when $\mathrm{a}>0$, opens down when $\mathrm{a}<0$)...
IV. Examples (pp.626): Exercises \#26,38

HW: pp.625-628 / Exercises \#1-15(odd),17,21,25, 29,37
Read pp.638-643 (section 8.5 / polynomials only)

