I. Imaginary Number "i" (p.563):

$$
\begin{aligned}
& \text { 1. } \sqrt{-1}=i \\
& \text { 2. } i^{2}=
\end{aligned}
$$

II. Examples (p.570): Exercises \#2,6,12
III. Complex Numbers (p.564):

$$
\mathbb{C}=\{a+b \boldsymbol{i} \mid \text { "a" \& "b" are real \#s }\}
$$

IV. Examples (p.570): Exercises\#18,24,34,40,58,62
V. Conjugate of "a+bi" is "a-bi"

$$
(a+b i)(a-b i)=
$$

$$
=
$$

$$
=
$$

$$
=\quad \text { real \# }
$$

VI. Division w/complex numbers (p.566):

1. Similar to rationalizing the denominator...
i.e., multiply by the conjugate of the denominator in order to obtain an equivalent fraction whose denominator is a real \# (no imaginary part)
2. Examples (p.570): Exercises \#64,72,84

HW: p.570/Exercises\#1,5,9,11,17,21,27,29,33,39, $45,49,55,59,63,67,81,85,95,99$
Read pp.582-592 (section 8.1)

