I. Square Roots (pp.502-503):

- 1. If "x" is any number, then the notation \sqrt{x} represents the "square root"
- 2. If $x = n^2$, then $n = \sqrt{x}$
- $3. \left(\sqrt{x}\right)^2 = \underline{\hspace{1cm}}$
- 4. $\sqrt{x^2} =$ ____
- 5. Examples (p.511): Exercises #4,6,10,16,18

II. Square Root function (pp.503-504):

- 1. Graph of $f(x) = \sqrt{x}$ see Figure 7.1
- 2. $D = \{x \mid x \ge 0\}$
- 3. Domain of $\sqrt{g(x)}$ is $\{x \mid g(x) \ge 0\}$
- 4. Examples (p.511): Exercises #22,28,32

III. More about \sqrt{x}

- 1. $\sqrt{}$ symbol is the radical sign, "x" is the "radicand"
- 2. If $x \le 0$, then...
 - a. \sqrt{x} is not a real #
 - b. $\sqrt{x^2} = |x|$
- 3. Examples (p.512): Exercises #36,38,42,44

HW: pp.511-513 / Exercises #1-45(odd) Read pp.515-521 (section 7.2)