I. Square Roots (pp.502-503):

1. If " x " is any number, then the notation \sqrt{x} represents the "square root"
2. If $\boldsymbol{x}=\mathrm{n}^{2}$, then $\mathrm{n}=\sqrt{\boldsymbol{x}}$
3. $(\sqrt{x})^{2}=$
4. $\sqrt{x^{2}}=$
5. Examples (p.511): Exercises \#4,6,10,16,18

II. Square Root function (pp.503-504):

1. Graph of $f(x)=\sqrt{x}$ see Figure 7.1
2. $\mathrm{D}=\{\boldsymbol{x} \mid \boldsymbol{x} \geq 0\}$
3. Domain of $\sqrt{g(\boldsymbol{x})}$ is $\{\boldsymbol{x} \mid g(\boldsymbol{x}) \geq 0\}$
4. Examples (p.511): Exercises $\# 22,28,32$
III. More about \sqrt{x}
5. $\sqrt{ }$ symbol is the radical sign, " x " is the "radicand"
6. If $\boldsymbol{x} \leq 0$, then...
a. $\sqrt{\boldsymbol{x}}$ is not a real \#
b. $\sqrt{\boldsymbol{x}^{2}}=|\boldsymbol{x}|$
7. Examples (p.512): Exercises \#36,38,42,44

HW: pp.511-513 / Exercises \#1-45(odd) Read pp.515-521 (section 7.2)

