I. Linear Inequality in One Variable:

 $\mathbf{a x}+\mathbf{b} \geq \mathbf{c} \quad$ (general form)where \mathbf{a}, \mathbf{b} and \mathbf{c} are constants $(\leq,<o r>$ are also possible)

$$
e . g ., 2 \boldsymbol{x}+5<13 \quad(\mathbf{a}=2, \mathbf{b}=5, \mathbf{c}=13)
$$

II. Method for Solving (p.256):

Manipulate $(+,-, \times$ and/or \div) the inequality as if it were an equation in order to isolate the variable on one side; EXCEPT - REVERSE the inequality SIGN whenever MULTIPLYING (or DIVIDING) by a NEGATIVE \#

$$
\begin{aligned}
\text { e.g., } 2 \boldsymbol{x}+5 & <13 \\
2 \boldsymbol{x} & <8 \text { after subtracting } 5 \\
\boldsymbol{x} & <4 \text { after dividing by } 2
\end{aligned}
$$

Note: the solution is ALL numbers less than 4 (i.e., an infinite set of numbers)

III. Examples (p.262): Exercises \#14,20,30,38

HW: p. 262 / Exercises \#3,13,15,17,19,25,33 Read pp.266-271 (section 4.2)

