I. Systems of Linear Equations (in 2 -variables):

$$
\begin{array}{ll}
& \mathrm{a}_{1} \boldsymbol{x}+\mathrm{b}_{1} \boldsymbol{y}=\mathrm{c}_{1} \\
& \mathrm{a}_{2} \boldsymbol{x}+\mathrm{b}_{2} \boldsymbol{y}=\mathrm{c}_{2} \\
\text { where } & \mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}}, \text { and } \mathrm{c}_{\mathrm{i}} \text { are real \# constants } \\
\text { e.g., } & 4 \boldsymbol{x}+\boldsymbol{y}=4 \\
& 3 \boldsymbol{x}-\boldsymbol{y}=3
\end{array}
$$

whose solution is $(\boldsymbol{x}, \boldsymbol{y})=(1,0)$
since $4(1)+0=4$
and $3(1)-0=3$

II. Three Methods of Solution:

1. Graphing (p.179) - intuitive, but time consuming, inefficient $\mathrm{w} /$ non-integer solutions, prone to error
2. Substitution (p.181) - abstract (algebraic), efficient, and less prone to error, but often involves fractions
3. Elimination (p.183) - abstract (algebraic), efficient, and less prone to error, but can be labor intensive

III. Examples (p.190): Exercises \#12,28,34,68

IV. Three Possible Outcomes:

1. Unique solution $(\boldsymbol{x}, \boldsymbol{y})$ - lines intersect at 1 point only
2. No solution - lines are parallel
3. Infinitely many solutions - lines are identical
of the form... $(\boldsymbol{x}, \mathrm{m} \boldsymbol{x}+\mathrm{b})$ where \boldsymbol{x} is any real \#

HW: pp.190-191 / Exercises\#9,17,25,33,39,55,63, 65,79
Read pp.194-203 (section 3.2)

