I. \boldsymbol{x} - and \boldsymbol{y}-intercepts of a line...

...to find these two points...
Let $\boldsymbol{x}=0$ in the equation, solve for $\boldsymbol{y}=\mathrm{b}$, then let $\boldsymbol{y}=0$ in the equation, solve for $\boldsymbol{x}=\mathrm{a}$.

\boldsymbol{x}	\boldsymbol{y}
0	b
a	0

II. Slope of a line (p.138): quantitative measure of how steep a line is tilted, usually denoted "m"

For any two points on a line,

$$
\begin{aligned}
& \mathrm{P}_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right) \& \mathrm{P}_{2}\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right) \ldots
\end{aligned}
$$

III. Equation Forms of a Line:

1. $y=m x+b$
2. $\mathrm{A} \boldsymbol{x}+\mathrm{B} \boldsymbol{y}=\mathrm{C}$
slope-intercept form standard form
IV. Examples (pp.151-152): Exercises\#4,16,22,26,30
V. Two Anomalous Lines (p.145):

Type of Line		Equation Form	\boldsymbol{x} - and \boldsymbol{y} - Intercepts
1. Horizontal	$\boldsymbol{y}=\mathrm{b}$	none \& (0,b)	$\mathrm{m}=0$
2. Vertical	$\boldsymbol{x}=\mathrm{a}$	$(\mathrm{a}, 0) \&$ none	m is undefined

VI. Examples (p.152): Exercises \#52,60

VII. Application Example (p.153): Exercise \#80

HW: pp.151-153 / Exercises \#7,11,15,19, 21-61(every other odd),77,81
Read pp.136-150 (section 2.4)

