I. Function Arithmetic (p.128):

$$
\begin{aligned}
& {[f \pm g](\boldsymbol{x})=f(\boldsymbol{x}) \pm g(\boldsymbol{x})} \\
& {[f \cdot g](\boldsymbol{x})=f(\boldsymbol{x}) \times g(\boldsymbol{x})} \\
& {[f \div g](\boldsymbol{x})=f(\boldsymbol{x}) \div g(\boldsymbol{x})}
\end{aligned}
$$

II. Domain \sim permitted set of \boldsymbol{x}-values set of Real Numbers or subset (avoid $\div 0$)
III. Examples (pp.132-133): Exercises\#8,10,16,22,40

HW: pp.132-133 / Exercises \#3-51 (every other odd)

I. \boldsymbol{x} - and \boldsymbol{y}-intercepts of a line...

...to find these two points... Let $\boldsymbol{x}=0$ in the equation, solve for $\boldsymbol{y}=\mathrm{b}$, then let $\boldsymbol{y}=0$ in the equation, solve for $\boldsymbol{x}=\mathrm{a}$.

\boldsymbol{x}	\boldsymbol{y}
0	b
a	0

II. Slope of a line (p.138): quantitative measure of how steep a line is tilted, usually denoted " m "

For any two points on a line,

$$
\begin{aligned}
& \mathrm{P}_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right) \& \mathrm{P}_{2}\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right) \ldots
\end{aligned}
$$

III. Equation Forms of a Line:

1. $y=\mathrm{m} x+\mathrm{b}$
2. $\mathrm{A} \boldsymbol{x}+\mathrm{B} \boldsymbol{y}=\mathrm{C}$
slope-intercept form standard form
IV. Examples (p.151): Exercise \#4

HW: p. 151 / Exercises \#7,11,15 Read pp.136-150 (section 2.4)

