I. Graphing a Function:

plot enough pairs of $(\boldsymbol{x}, \boldsymbol{y})$-coordinate points until the shape of the curve is recognizable... same as before/graphing an equation in 2-d (see 1.3)
$\left.\begin{array}{l|l}\boldsymbol{x} & f(\boldsymbol{x})\end{array}\right\}$ recall that, $\boldsymbol{y}=f(\boldsymbol{x})$
II. Examples (p.121): Exercises \#6,8
III. Vertical Line Test (p.116): the graph of an equation for which any vertical line does NOT intersect more than once is a function
IV. Interval Notation:
[a,b] means $\mathrm{a} \leq \boldsymbol{x} \leq \mathrm{b} \quad[\mathrm{a}, \infty)$ means $\boldsymbol{x} \geq \mathrm{a}$
(a, b) means $\mathrm{a}<\boldsymbol{x}<\mathrm{b} \quad(-\infty, \mathrm{b}]$ means $\boldsymbol{x} \leq \mathrm{b}$
V. Domain \& Range (p.119):
$\mathrm{D}=$ Domain set of x-values for which " y " is defined $\mathrm{R}=$ Range set of all possible \boldsymbol{y}-values
VI. Examples (p.122): Exercises \#20-30(even),34, 38
HW: Read pp.114-121 (section 2.2) pp.121-122 / Exercises \#5-37(odd)

