I. Transformations (pp.132-136) -

1. Translation (shift up/down/left/right):

$$
\begin{aligned}
& \boldsymbol{y}=f(\boldsymbol{x})+\mathrm{k} \text { is } \boldsymbol{y}=f(\boldsymbol{x}) \text { shifted vertically } \\
& \text { " } \mathrm{k} " \text { units upward }(\mathrm{k}>0) \text { or downward }(\mathrm{k}<0) \ldots \\
& \boldsymbol{y}=f(\boldsymbol{x}+\mathrm{k}) \text { is } \boldsymbol{y}=f(\boldsymbol{x}) \text { shifted horizontally }
\end{aligned}
$$

" k " units to the left $(\mathrm{k}>0)$ or to the right $(\mathrm{k}<0)$)..
2. Reflection (180° rotation about coordinate axis):

$$
\begin{aligned}
& \boldsymbol{y}=-f(\boldsymbol{x}) \text { is } \boldsymbol{y}=f(\boldsymbol{x}) \text { rotated w.r.t. } \boldsymbol{x} \text {-axis } \\
& \boldsymbol{y}=f(-\boldsymbol{x}) \text { is } \boldsymbol{y}=f(\boldsymbol{x}) \text { rotated w.r.t. } \boldsymbol{y} \text {-axis }
\end{aligned}
$$

3. Stretch/shrink (vertical elongation/contraction):
$\boldsymbol{y}=\mathrm{k} \cdot f(\boldsymbol{x})$ is $\boldsymbol{y}=f(\boldsymbol{x})$ elongated vertically when $\mathrm{k}>1$ or contracted vertically when $0<\mathrm{k}<1$, by a factor of " k "...

II. Examples (p.143): Exercises \#12,16

III. Symmetry (pp.138-139) the graph of $\boldsymbol{y}=f(\boldsymbol{x})$ is symmetric w.r.t. the... 1. \boldsymbol{y}-axis $\leftrightarrow f(\boldsymbol{x})=f(-\boldsymbol{x}) \quad$ a.k.a. even function i.e., if (x, y) lies on graph, then $(-\boldsymbol{x}, \boldsymbol{y})$ lies on graph.
2. origin $\leftrightarrow f(\boldsymbol{x})=-f(\boldsymbol{x})$ a.k.a. odd function i.e., if $(\boldsymbol{x}, \boldsymbol{y})$ lies on graph, then $(-\boldsymbol{x},-\boldsymbol{y})$ lies on graph.
IV. Examples (p.144): Exercises \#54,58

HW: pp.143-144 / Exercises \#1-29(every other odd), $35,47,51,53,59,69-81$ (odd)

