V. Circles (p.29):
A circle with radius “\(r \)” and whose center is located at \(C(h,k) \) is given by...
\[
(x - h)^2 + (y - k)^2 = r^2
\]
(standard form)

VI. Examples (p.35): Exercises #28,36,56c;50

HW: pp.35-36 / Exercises #25-57 (every other odd)
I. Slope of a Line (p.39): denoted by “m,” and is defined as the ratio of the “vertical change” to the “horizontal change” between any two points (a.k.a., the “rise over the run”)...

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

¡muy importante!
II. Linear Equation Forms

1. **Slope-intercept form** (p.41): \(y = mx + b \)

2. **Standard form** (p.31): \(Ax + By = C \)

 usually \(A, B & C \) are integers

3. **Point-slope form** (p.40): \(y - y_1 = m(x - x_1) \)

III. Parallel vs. Perpendicular (pp.43-44):

1. \(m_1 = m_2 \iff l_1 \parallel l_2 \)

 \((\text{i.e.}, \text{ parallel when slopes are equal})\)

2. \(m_1 = -\frac{1}{m_2} \iff l_1 \perp l_2 \)

 \((\text{i.e.}, \text{ perpendicular when slopes are negative reciprocals; or } m_1 \cdot m_2 = -1)\)
IV. Examples (pp.48-49): Exercises #26,54,70

HW: pp.48-49 / Exercises #7,9,13,17,19,23,25,27-37(odd),45,47,53,57,59,61,63,67,71,89,93