I. For a binomial distribution where " p " (probability of success in any one trial) is not known, it may be estimated by a sampling distribution of $\overline{\mathrm{p}}$ using:
(1) standard normal distribution if σ is known
(2) t -distribution if σ is not known (not covered)
II. The "margin of error" is $E=|\bar{p}-p|$; i.e., how far " \bar{p} " is from the true (population) value for " p "
III. The "confidence interval" for $\overline{\mathrm{p}}$ in a sampling distribution is given by: $\overline{\mathrm{p}}-\mathrm{E}<\mathrm{p}<\overline{\mathrm{p}}+\mathrm{E}$, where the confidence level is expressed by a percent, $\mathrm{P}(\overline{\mathrm{p}}-\mathrm{E}<\mathrm{p}<\overline{\mathrm{p}}+\mathrm{E})=\mathrm{c} \% \ldots$
IV. Using the standard normal distribution:
if $\mathrm{P}\left(-\boldsymbol{z}_{\mathrm{c}}<\boldsymbol{z}<\boldsymbol{z}_{\mathrm{c}}\right) \approx \mathrm{c} \%$, then...
"E" can be determined as follows, solve $\quad \boldsymbol{z}_{\mathrm{c}}=\left(\mathrm{p}+\mathrm{E}-\mu_{\overline{\mathrm{p}}}\right) \div \sigma_{\overline{\mathrm{p}}}$ multiply by " $\sigma_{\bar{p}}$ ", to obtain

$$
\boldsymbol{z}_{\mathrm{c}} \times \sigma_{\overline{\mathrm{p}}}=\mathrm{p}+E-\mu_{\overline{\mathrm{p}}}
$$

then use $\quad \sigma_{\overline{\mathrm{p}}}=\sigma \div \sqrt{\mathrm{n}}$ \& $\mu_{\overline{\mathrm{p}}}=\mathrm{p}$
to get $\quad \boldsymbol{z}_{\mathrm{c}} \times \sigma \div \sqrt{\mathrm{n}}=\mathrm{p}+\mathrm{E}-\mathrm{p}$

$$
\begin{aligned}
& \mid \boldsymbol{z}_{\mathrm{c}} \times \sigma \div \sqrt{\mathrm{n}}=\mathrm{E} \text { " } \mathrm{p} .388 \\
& \text { " } \mathrm{z}_{\mathrm{c}} \text { " is the "critical value" } \\
& \text { and } \sigma=\sqrt{\overline{\mathrm{p}}(1-\overline{\mathrm{p}})}
\end{aligned}
$$

V. The confidence interval/level \& margin of error model is statistically valid provided:
(1) the binomial distribution is normally distributed

OR
(2) $\mathrm{n}>5 \div \overline{\mathrm{p}}$ and $\mathrm{n}>5 \div(1-\overline{\mathrm{p}})$
VI. Examples (pp.395-398): \#8,10a,14ab,22

HW: pp.395-398 / \#1,3,7,9a,13ab,15,19
Read pp.401-412 (section 7.4)
I. Comparing two population means $\mu_{1} \& \mu_{2}$, or two binomial percentages $p_{1} \& p_{2}$, can be done provided that the:
(1) original/raw data are normally distributed;

OR
(2) original/raw data distribution is not highly skewed, and that the sampling distributions both have samples sizes no less than 30.
II. Difference of Population Means (pp.403-405):
$\mathrm{E}=$ critical value \times standard deviation

$$
\sigma=\sqrt{\frac{\sigma_{1}^{2}}{\mathrm{n}_{1}}+\frac{\sigma_{2}^{2}}{\mathrm{n}_{2}}} \text { (provided on tests) } \begin{aligned}
& \text { use } \mathrm{s}_{1} \& \mathrm{~s}_{2} \\
& \text { if } \sigma_{1} \& \sigma_{2} \\
& \text { unknown }
\end{aligned}
$$

Confidence interval:

$$
\left(\overline{\boldsymbol{x}}_{1}-\overline{\boldsymbol{x}}_{2}\right)-\mathrm{E}<\mu_{1}-\mu_{2}<\left(\overline{\boldsymbol{x}}_{1}-\overline{\boldsymbol{x}}_{2}\right)+\mathrm{E}
$$

III. Difference of Binomial Percentages (p.409): $\mathrm{E}=$ critical value \times standard deviation $\bar{\sigma}=\sqrt{\frac{\overline{p_{1}}\left(1-\overline{p_{1}}\right)}{n_{1}}+\frac{\overline{p_{2}}\left(1-\overline{p_{2}}\right)}{n_{2}}} \quad$ (provided on tests)
Confidence interval:

$$
\left(\overline{\mathrm{p}}_{1}-\overline{\mathrm{p}}_{2}\right)-\mathrm{E}<\mathrm{p}_{1}-\mathrm{p}_{2}<\left(\overline{\mathrm{p}}_{1}-\overline{\mathrm{p}}_{2}\right)+\mathrm{E}
$$

VI. Examples (pp.412-421): \#4,6,10,16b,28c

HW: pp.412-420 / \#1,5,7,11,15,21,28a Read pp.438-449 (section 8.1)

