I. Discrete vs Continuous Distributions:

1. A binomial distribution is \qquad
2. A normal distribution is \qquad
3. A binomial distribution may be "approximated" by the normal distribution provided that the number of trials "n" is sufficiently large.
4. Example 14 (pp.333-334), for Figure 6-34 find...
$\mathrm{P}(0) \approx 0$.

$$
\mathrm{P}(2) \approx 0
$$

\qquad
$\mathrm{P}(1) \approx 0$. \qquad

$$
\mathrm{P}(3) \approx 0
$$

\qquad
where $\mathrm{P}(\mathrm{r})={ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \times \mathrm{p}^{\mathrm{r}} \times(1-\mathrm{p})^{\mathrm{n}-\mathrm{r}}$
for Figure 6-35, why does the graph appear to stop after $\mathrm{r}=7$ (when $\mathrm{n}=10$)?
find $\mathrm{P}(8) \approx{ }_{10} \mathrm{C}_{8} \times(0.25)^{8} \times(0.75)^{2} \approx 0$.
and $\mathrm{P}(9) \approx \mathrm{P}(10) \approx \quad$ similar for graph 6-36 \& 37
5. " n " size requirement" is, $n>5 \div p \& n>5 \div(1-p)$
(reliable when " p " is not close to $\mathbf{0}$ or $\mathbf{1}$)

II. Normal Distribution for Discrete Variables:

1. Continuous variable...

$\mathrm{P}(\mathrm{a}<\boldsymbol{x}<\mathrm{b})=$ probability that a random " \boldsymbol{x} " value is between "a" and " b "
$P(a)=$ \qquad and $\mathrm{P}(\mathrm{b})=$ \qquad
2. Discrete variable (using "continuity corrections" / p.335)...
$\mathrm{P}(\mathrm{a})=\mathrm{P}(\mathrm{a}-0.5<\boldsymbol{x}<\mathrm{a}+0.5)$
$\mathrm{P}(\mathrm{b})=\mathrm{P}(\mathrm{b}-0.5<\boldsymbol{x}<\mathrm{b}+0.5)$
$\mathrm{P}(\mathrm{a}-0.5<\boldsymbol{x}<\mathrm{b}+0.5)=$ probability that a random " \boldsymbol{x} " value is between "a" and "b"

III. Examples (pp.339-342): \#4,6,10,12-P(35)

HW: pp.339-342 / \#1,3,5,9,11,13abc, 15

