I. Normal Curve (p.273):

1. A.k.a. the Bell Curve
2. Graph represents the relative frequency (or probability) distribution of a continuous variable...

3. Peak (max frequency) occurs at the mean, $\boldsymbol{x}=\mu$
4. Symmetric about (the vertical line), $\boldsymbol{x}=\mu$
5. Area under the curve (from $-\infty$ to ∞) is 1
6. Mean, median \& mode are all equal

II. Empirical Rule (p.274):

1. 68% of the Area under the curve lies in the interval between $\mu-\sigma<\boldsymbol{x}<\mu+\sigma$
2. 95% of the Area under the curve lies in the interval between $\mu-2 \sigma<x<\mu+2 \sigma$
3. 99.7% of the Area under the curve lies in the interval between $\mu-3 \sigma<x<\mu+3 \sigma$
III. Examples (pp.282-283): \#6,8,10
IV. Area Interpretation (p.276): the $\%$ area of the graph that lies within the interval $\mathrm{a}<\boldsymbol{x}<\mathrm{b}$, represents the $\%$ of data items in a sample/population found in the interval, as well as the probability that a random data value " x " lies in the interval.
V. Control Graph (pp.277-279):
line graph which helps to identify "warning signals" for outliers and/or alarming trends; A. Graph details/procedure requires horizontal lines depicted at the values of $\mu, \mu \pm 2 \sigma$, and $\mu \pm 3 \sigma \ldots$
B. Control alerts for "out of control" signals consists of three major types, I, II \& III (provided on all tests).
VI. Example (p.283): \#12

HW: pp.281-285 / \#3,5,9,13,15
Read pp.288-296 (section 6.2)

