I. Continuous vs. Discrete (p.198):

1. A variable quantity which has an infinite and uncountable number of values is continuous.
2. A variable quantity which has either a finite or countable number of values is discrete.
3. Examples (p.206): \#2, \qquad
\qquad
\qquad
II. Probability Distribution (p.199):
4. Graph, table, etc. which defines the probabilities assigned to all the possible (distinct) outcomes; same as a relative frequency distribution.
5. The sum of all of the probabilities equals one (or 100%).
6. Mean (a.k.a. expected value) is given by, $\mu_{\mathrm{x}}=\sum \boldsymbol{x} \cdot \mathrm{P}(\boldsymbol{x})$
III. Examples (pp.206-208): \#4,8,10,14

Create the probability distribution for tossing a fair coin twice, with the variable " x " representing the number of Heads obtained... $\mathrm{n}(\mathrm{s})=\ldots, \mathrm{S}=\{, \quad, \quad$,

\boldsymbol{x}	$\mathrm{P}(\boldsymbol{x})$	$\boldsymbol{x} \cdot \mathrm{P}(\boldsymbol{x})$
0		
1		
2		

$$
\sum x \cdot \mathrm{P}(x)=
$$

Create the probability distribution for rolling a fair die, with the variable " x " representing the number of dots on the top face... $n(s)=\ldots, S=\{, \quad, \quad, \quad\}$
...probability distribution for rolling a die...

\boldsymbol{x}	$\mathrm{P}(\boldsymbol{x})$	$\boldsymbol{x} \cdot \mathrm{P}(\boldsymbol{x})$
1		
2		
3		
4		
5		
6		
$\sum x \cdot \mathrm{P}(x)=$		

HW: pp.205-209 / \#1,3,11abc,13bcd,15,17 Read pp.198-205 (section 5.1)
Read pp.212-221 (section 5.2)

