I. Continuous vs. Discrete (p.198):

- 1. A variable quantity which has an infinite and uncountable number of values is continuous.
- 2. A variable quantity which has either a finite or countable number of values is discrete.

3.	Examples (p.206): #2,	

II. Probability Distribution (p.199):

- 1. Graph, table, etc. which defines the probabilities assigned to all the possible (distinct) outcomes; same as a relative frequency distribution.
- 2. The sum of all of the probabilities equals one (or 100%).
- 3. Mean (a.k.a. expected value) is given by, $\mu_X = \sum x \cdot P(x)$

III. Examples (pp.206-208): #4,8,10,14

Create the probability distribution for tossing a fair coin twice, with the variable "x" representing the number of Heads obtained... n(s) = 0, $S = \{0, 0, 1, 0, 1\}$

X	P(x)	$x \cdot P(x)$
0		
1		
2		

$$\sum x \cdot P(x) =$$

...probability distribution for rolling a die...

X	P(x)	$x \cdot P(x)$
1		
2		
3		
4		
5		
6		

$$\sum x \cdot P(x) =$$

HW: pp.205-209 / #1,3,11abc,13bcd,15,17 Read pp.198-205 (section 5.1) Read pp.212-221 (section 5.2)