I. General Counting Principle (p.177):

In a sequence of selections/events where...

 $n_1 = \#$ of possibilities for 1st selection/event,

 $n_2 = \#$ of possibilities for 2^{nd} selection/event,

 n_3 = # of possibilities for 3^{rd} selection/event, etc.

the total # of possible outcomes is given by -

$$\mathbf{N} = \mathbf{n}_1 \times \mathbf{n}_2 \times \mathbf{n}_3 \times \dots$$

II. "n" Factorial (p.181):

$$n! = n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1$$

III. Examples (pp.185-186): #6,12

IV. Permutation (p.182):

- 1. A sequence of selections/events where "r" possibilities occur from "n" different possibilities, repetition (replacement) is not permitted, and the **order is relevant**...
- 2. The total # of possible outcomes is given by –

$$_{n}\mathbf{P}_{r} = \frac{n!}{(n-r)!}$$

V. Combination (p.183):

- 1. A sequence of selections/events where "r" possibilities occur from "n" different possibilities, repetition (replacement) is not permitted, and the **order** is **NOT** relevant...
- 2. The total # of possible outcomes is given by —

$$_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!}$$

VI. Examples (pp.186-187): #14,16,18,20,22,24,26

HW: pp.185-187 / #1,3,5,9-27(odd)