I. General Probability (p.163):

1. $\mathrm{P}(\mathrm{E}$ or F$)=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})-\mathrm{P}(\mathrm{E}$ and F$)$
2. An experiment consists of rolling two (fair) die. What is the probability of obtaining either a sum which is less than four or is an even number?
II. Mutually Exclusive Events (p.163):
3. Events E and F cannot both occur (e.g., E and $\sim \mathrm{E}$)
4. $\mathrm{P}(\mathrm{E}$ and F$)=0$
5. $\mathrm{P}(\mathrm{E}$ or F$)=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})$
III. Conditional Probability (p.156):
6. The Probability that event E will occur once event F has occurred is denoted as $\mathrm{P}(\mathrm{E} \mid \mathrm{F})$...
7. $\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\mathrm{P}(\mathrm{E}$ and F$) \div \mathrm{P}(\mathrm{F})$

$$
\text { or } \mathrm{P}(\mathrm{E} \text { and } \mathrm{F})=\mathrm{P}(\mathrm{E} \mid \mathrm{F}) \times \mathrm{P}(\mathrm{~F})
$$

IV. Independent Events (p.156):

1. The occurrence of event E is unaffected by the occurrence event F , and vice versa
2. $\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\mathrm{P}(\mathrm{E})$ and $\mathrm{P}(\mathrm{F} \mid \mathrm{E})=\mathrm{P}(\mathrm{F})$
3. $\mathrm{P}(\mathrm{E}$ and F$)=\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})$
V. Examples (pp.169-174): \#4,6,8,10,12,16ab,18,22,

26ab

VI. Summary of Probability Rules: see p. 168

HW: pp.169-175 / \#3-13(odd),19,21,25,33,35 Read pp.177-184 (section 4.3)

