I. Terminology \& Notation (p.144):

1. Event " E " is any outcome(s) from an experiment e.g., obtaining a " 3 " on the roll of one die, or getting a "full-house" in a poker hand
2. $\mathrm{P}(\mathrm{E})$ represents the Probability that event E occurs
e.g., $\mathrm{P}($ odd $\#)=3 / 6=1 / 2$ or 0.5 when rolling one die probability values are always between zero and one...
$\mathrm{P}(\mathrm{E})=0$ means that event E is impossible
$P(E)=1$ means that event E is certain to occur
3. Sample Space is the listing (set) of all possible outcomes (or simple events in an experiment) e.g., $\mathrm{S}=\{1,2,3,4,5,6\}$ when rolling one die
4. When using a frequency distribution, $\mathrm{P}(\mathrm{E})$ is equal to the relative frequency corresponding to E .

II. \sim E, a.k.a. E complement (p.148):

1. " \sim " is the logical negation symbol, thus... $" \sim E "$ means "not E" (i.e., the event "E does not occur")
2. $\mathrm{P}(\sim \mathrm{E})=1-\mathrm{P}(\mathrm{E})$
III. Examples (pp.152-154): \#2,8,10,12,14,18,20

HW: pp.152-155 / \#3,7,11,13,17,19,21,23 Read pp.155-169 (section 4.2)

