I. Basic Concepts of the Line, \(l \):

![Graph of a line with points and slopes](image)

Slope, \(m = \frac{y_2 - y_1}{x_2 - x_1} \)

\(y \)-intercept @ \((0,b)\)

II. Equation Forms:

1. \(y = mx + b \)
 slope-intercept form
2. \(y - y_1 = m(x - x_1) \)
 point-slope form
3. \(Ax + By = C \)
 standard form

III. Examples (p.127): Exercises #34,50,64
IV. Two Anomalous Lines:

Vertical line, l_1: $x = a$
undefined slope

Horizontal line, l_2: $y = b$
no (zero) slope

V. Parallel lines:

$l_1 \parallel l_2 \iff m_1 = m_2$
($i.e.$, same slope)
VI. Perpendicular lines:

\[l_1 \perp l_2 \iff m_1 \cdot m_2 = -1 \]

or \[m_1 = -1/m_2 \]

(i.e., slopes are negative reciprocals)

VII. Examples (p.127): Exercises #70,78

HW: pp.126-129

Exercises #9-85 (every other odd), 99, 109
I. Quadratic Equation: \(ax^2 + bx + c = 0 \) may solve by...
 1. factoring
 2. square root property, \(x^2 = k \Rightarrow x = \pm \sqrt{k} \)
 3. complete the square, apply when \(a = 1 \)
 4. quadratic formula, \[
 x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
 \]

II. Examples (p.148): Exercises #38, 52
III. The Discriminant (p.143):

\[b^2 - 4ac \]

\[> 0 \implies 2 \text{ real roots (solutions)} \]
\[= 0 \implies 1 \text{ real (double) root} \]
\[< 0 \implies 0 \text{ real roots} \]
\[(i.e., 2 \text{ imaginary roots}) \]

IV. Examples (pp.148-149): Exercises #56, 82, 86, 110

HW: pp.148-149 / Exercises #3, 11-21(odd), 31, 37, 43-49(odd), 53, 57, 69, 81, 95, 105