Write the standard equation for each of the following circles:

64. **a.**

 ![Graph of circle a.](image)

 If we manage to identify the coordinates of the center and the length of the radius, then we will have all of the information (i.e., \(h, k\) & \(r\)) needed to input into the standard form equation of a circle...

 a. In the first graph we see that the center has an \(x\)-coordinate of zero (i.e., \(h = 0\)), has negative one as its \(y\)-coordinate (i.e., \(k = -1\)), and the radius is four units in length (i.e., \(r = 4\)). Hence we can substitute these three values into the equation, \((x - h)^2 + (y - k)^2 = r^2\), to get:

 \[
 (x - 0)^2 + (y - (-1))^2 = 4^2
 \]

 which simplifies as

 \[
 x^2 + (y + 1)^2 = 16
 \]

 ![Equation for circle a.](image)

64. **b.**

 ![Graph of circle b.](image)

 b. In the second graph we observe that the center has coordinates \((h,k) = (1,3)\), and that the length of the radius is the distance between this center point and the origin \((0,0)\). We may use the distance formula to find \(r\) as follows...

 \[
 r = \sqrt{(1-0)^2 + (3-0)^2} \\
 = \sqrt{1^2 + 3^2} \\
 = \sqrt{10}
 \]

 Now we can input the three values into the equation, \((x - h)^2 + (y - k)^2 = r^2\), to obtain:

 \[
 (x - 1)^2 + (y - 3)^2 = (\sqrt{10})^2
 \]

 which simplifies as

 \[
 (x - 1)^2 + (y - 3)^2 = 10
 \]