III. Factoring “$ax^2 + bx + c$” (p.356):

1. $(mx + p)(nx + q) = ax^2 + bx + c$

 requires four numbers “m, n, p” & “q” such that...

 $pq = c, \ mn = a$ and $mq + pn = b$

 i.e., find factors of “a & c” where O+I equals “b”

2. Examples (p.361): Exercises #48,52,54,72

HW: p.361 / Exercises #45-59(odd),69,71,73
I. Difference/Sum of Two Squares

1. $x^2 - y^2 = (x + y)(x - y)$
2. $x^2 + y^2$ is “prime” (i.e., can’t be factored)
3. Examples (p.371): Exercises #4, 26, 36

HW: pp.371-372 / Exercises #1-9 (odd)
Read pp.364-370 (section 5.5)