I. Factor “$x^2 + bx + c$” (p.351):

1. $(x + p)(x + q) = x^2 + xq + px + pq$

 $= x^2 + qx + px + pq$

 $= x^2 + px + qx + pq$

 $= x^2 + (p+q)x + pq$

 i.e., find two numbers “p” & “q” such that...

 $x^2 + bx + c = x^2 + (p+q)x + pq$

 need $pq = c$ and $p + q = b$

2. Examples (p.361): Exercises #8,18,22,32,36

II. Factor “$x^{2n} + bx^n + c$” (p.356):

1. “u”-substitution, let $x^n = u$ then $u^2 = _____$

 and...

 $x^{2n} + bx^n + c = u^2 + bu + c$

 same criteria for p & q (*i.e.*, need $pq = c$ & $p + q = b)

 as then...

 $(u + p)(u + q) = x^{2n} + bx^n + c$

2. Examples (p.361): Exercises #40,42
HW: p.361 / Exercises #3, 7, 11, 15, 19, 21, 31-41 (odd)
Re-read pp.356-360 (section 5.4 ~ ax² + bx + c)