I. x- and y-intercepts of a line...

...to find these two points...

Let $x = 0$ in the equation, solve for $y = b$, then let $y = 0$ in the equation, solve for $x = a$.

\[
\begin{array}{c|c}
 x & y \\
 \hline
 0 & b \\
 a & 0 \\
\end{array}
\]

II. Slope of a line (p.138): quantitative measure of how steep a line is tilted, usually denoted “m”

For any two points on a line, $P_1(x_1,y_1)$ & $P_2(x_2,y_2)$...

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

“rise” (vertical change) over the “run” (horizontal change)
III. Equation Forms of a Line:

1. \(y = mx + b \)
 slope-intercept form

2. \(Ax + By = C \)
 standard form

IV. Examples (pp.151-152): Exercises #4,16,22,26,30

V. Two Anomalous Lines (p.145):

<table>
<thead>
<tr>
<th>Type of Line</th>
<th>Equation Form</th>
<th>(x)- and (y)-Intercepts</th>
<th>Slope of line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Horizontal</td>
<td>(y = b)</td>
<td>none & (0,b)</td>
<td>(m = 0)</td>
</tr>
<tr>
<td>2. Vertical</td>
<td>(x = a)</td>
<td>(a,0) & none</td>
<td>(m) is undefined</td>
</tr>
</tbody>
</table>

VI. Examples (p.152): Exercises #52,60
VII. Application Example (p.153): Exercise #80

HW: pp.151-153 / Exercises #7,11,15,19, 21-61(every other odd),77,81
Read pp.136-150 (section 2.4)