Final Examination - Monday, Dec.10 ${ }^{\text {th }}$ (4:10p.m. - 6:10p.m.)

you will need to know these two types of problems...
Problem \#1: Solve the (linear) system of equations by graphing. Be sure to label the solution.
$2 x-y=2$
$y=\frac{2}{3} x+2$

Problem \#2: Solve/graph the (linear) inequality, $2 \boldsymbol{x}-3 \boldsymbol{y}<0$

Exam 1: geometry (area \& perimeter/circumference) formulas \& percent; distributive
propertv: solve linear equations \& inequalities in one variable
(slope) $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \boldsymbol{y}=\mathrm{m} \boldsymbol{x}+\mathrm{b} \& \mathrm{~A} \boldsymbol{x}+\mathrm{B} \boldsymbol{y}=\mathrm{C} ;$ graph linear equations \& $\begin{gathered}\text { inequalities in two variables; }\end{gathered}$
Exam 2: solve a system of linear equations by graphing, substitution and/or elimination methods; exponent properties (including scientific notation) \& factoring polynomials; simplify exponential \& polynomial expressions; solve polynomial equations

Exam 3: \pm rational expressions requires a common denominator (LCD); solve rational equations; simplify radical expressions (i.e., square/cube roots); solve radical equations; direct $v s$ inverse variation; complex numbers (\div requires the conjugate of " $\mathrm{a} \pm \mathrm{b} \boldsymbol{i}$ "); simplify complex number expressions; $\boldsymbol{i}=\sqrt{-1} \leftrightarrows \boldsymbol{i}^{2}=-1$

Chapter 9: graph a quadratic equation: $\boldsymbol{y}=\mathrm{a} \boldsymbol{x}^{2}+\mathrm{b} \boldsymbol{x}+\mathrm{c}$
identify Vertex, any \boldsymbol{x} - and/or \boldsymbol{y}-intercepts
quadratic formula: if $a x^{2}+b x+c=0$, then

$$
x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

Other formulas to know...

$$
\mathrm{I}=\mathrm{P} \cdot \mathrm{r} \cdot \mathrm{t},
$$

The Final Exam consists of 23 problems (five of which are word problems). Be sure to bring a calculator and a straight-edge. Pencil and eraser are recommended (although you may use pen at your own risk of personal peril).

