I. Solve a Radical Equation (p.577):

$$
\begin{aligned}
& \text { If } \mathrm{a}=\mathrm{b} \text {, then } \mathrm{a}^{\mathrm{n}}=\mathrm{b}^{\mathrm{n}} \\
& \text { i.e., } \quad \sqrt{\boldsymbol{x}}=2.5 \Rightarrow(\sqrt{\boldsymbol{x}})^{2}=(2.5)^{2} \\
& x
\end{aligned} \begin{aligned}
\boldsymbol{x} & = \\
\text { also, } \quad \sqrt[3]{\boldsymbol{x}}=-2 \Rightarrow(\sqrt[3]{\boldsymbol{x}})^{3} & =(-2)^{3} \\
\boldsymbol{x} & =
\end{aligned}
$$

II. Examples (p.578): Problems \#2,42,18,24,32,34, 38,44,54

HW: pp.578-580 / Problems \#1-53(every other odd),
55

Chapter 7: simplify rational expressions (i.e., factor numerator/denominator \& cancel common factors); perform arithmetic operations $(\pm, \times$ or \div); simplify compound fractions; solve equations w/rational expressions; solve proportions; solve application problems (esp. motion problems); solve direct ($\boldsymbol{y}=\mathrm{k} \boldsymbol{x}$) variation v s inverse $(y=\mathrm{k} / \boldsymbol{x})$ variation problems.

Chapter 8: know perfect square/cube roots; simplify radical expressions; perform arithmetic operations (\pm, \times or \div); rationalize the denominator; Pythagorean Theorem ($a^{2}+b^{2}=c^{2}$); solve equations w/a radical expression, including application problems.

