I. Solve a Radical Equation (p.577):

If
$$a = b$$
, then $a^{n} = b^{n}$
 $i.e., \quad \sqrt{x} = 2.5 \implies (\sqrt{x})^{2} = (2.5)^{2}$
 $x = \frac{1}{2}$
also, $\sqrt[3]{x} = -2 \implies (\sqrt[3]{x})^{3} = (-2)^{3}$
 $x = \frac{1}{2}$

II. Examples (p.578): Problems #2,42,18,24,**32**,34, 38,**44**,54

HW: pp.578-580 / Problems #1-53 (every other odd),

Chapter 7: simplify rational expressions (*i.e.*, factor numerator/denominator & cancel common factors); perform arithmetic operations (\pm , × or \div); simplify compound fractions; solve equations w/rational expressions; solve proportions; solve application problems (*esp.* motion problems); solve direct(y=kx) variation vs inverse (y=k/x) variation problems.

Chapter 8: know perfect square/cube roots; simplify radical expressions; perform arithmetic operations $(\pm, \times \text{ or } \div)$; rationalize the denominator; Pythagorean Theorem $(a^2 + b^2 = c^2)$; solve equations w/a radical expression, including application problems.