I. Dividing Radicals (p.563):

$$
\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}
$$

II. Examples (p.569): Problems \#8,12,14,16
III. Rationalize the denominator, Part 1 (p.565):

A square root which is not a "perfect" square root is an irrational number...
$\frac{a}{\sqrt{b}}$ has an irrational denominator, which may be \sqrt{b} "rationalized" as follows...

$$
\frac{\mathrm{a}}{\sqrt{\mathrm{~b}}} \cdot \frac{\sqrt{\mathrm{~b}}}{\sqrt{\mathrm{~b}}}=
$$

similarly,

$$
\frac{\mathrm{a}}{\sqrt[3]{\mathrm{b}}} \cdot \frac{\sqrt[3]{\mathrm{b}}}{\sqrt[3]{\mathrm{b}}} \cdot \frac{\sqrt[3]{\mathrm{b}}}{\sqrt[3]{\mathrm{b}}}=\square \text { (rationalize cube root) }
$$

VI. Examples (p.569): Problems \#20,28,30,32,42, 48
V. Rationalize the denominator, Part 2 (p.566):
A. Coniugate of " $a+b$ " is " $a-b$ "
B. $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=$

F	O	I	L

i.e., the product of conjugates is a \qquad \#
VI. Examples (p.569): Problems \#54,58,60

HW: pp.569-572 / Problems \#1-57(odd),65-93(odd) Read pp.573-575 (section 8.6)

