I. Square Root Definition (p.524):

If $\boldsymbol{x}^{2}=n$, then " \boldsymbol{x} " is a square root of " n "
i.e., $\boldsymbol{x}=\sqrt{\mathrm{n}}$
where...
" $\sqrt{ }$ " is the "radical" sign and " n " is the "radicand"
II. About Negatives:

1. $\boldsymbol{x}=-\sqrt{\mathrm{n}}$ is also a square root of " n "
2. $\mathrm{n}<0 \Rightarrow \sqrt{\mathrm{n}}$ is NOT a real \# (a.k.a. undefined)
III. $\sqrt{16}=\ldots$ since ${ }^{2}=$

$$
(\sqrt{\mathrm{n}})^{2}=\ldots \&\left(\sqrt{\mathrm{n}^{2}}\right)=
$$

IV. Examples (p.531): Problems \#4-26(even),46-54, 62-82(even)
V. Cube Roots (p.525):

If $x^{3}=n$, then " x " is a cube root of " n "

 i.e., $x=\sqrt[3]{n}$VI. $\sqrt[3]{64}=\ldots$ since $\quad{ }_{C}=$
$(\sqrt[3]{\mathrm{n}})^{3}=$
VII. Examples(p.531):Problems\#30-38(even),56,58, 60
VIII. Misc.Examples (p.532): Problems\#84-92(even)

HW: pp.531-532/Exercises\#1-37(odd),45-85(every other odd), $87,89,91,93$
Read pp.535-542 (section 8.2)

