## I. Square Root Definition (p.524):

If  $x^2 = n$ , then "x" is a square root of "n" i.e.,  $x = \sqrt{n}$  where...

"√" is the "radical" sign and "n" is the "radicand"

## II. About Negatives:

- 1.  $x = -\sqrt{n}$  is also a square root of "n"
- 2.  $n < 0 \Rightarrow \sqrt{n}$  is **NOT** a real # (a.k.a. undefined)

III. 
$$\sqrt{16} = \underline{\qquad} \text{ since } \frac{2}{\sqrt{n^2}} = \underline{\qquad}$$

IV. Examples (p.531): Problems #4-26(even),46-54, 62-82(even)

V. Cube Roots (p.525):

If  $x^3 = n$ , then "x" is a cube root of "n" i.e.,  $x = \sqrt[3]{n}$ 

VI. 
$$\sqrt[3]{64} = \underline{\qquad} \text{ since } \underline{\qquad} = \underline{\qquad}$$

- VII. Examples (p.531): Problems #30-38 (even), **56**, 58, 60
- VIII. Misc.Examples (p.532): Problems#84-92(even)
- HW: pp.531-532/Exercises#1-37(odd),45-85(every other odd),87,89,91,93

Read pp.535-542 (section 8.2)