II. Examples (p.438): Problems \#2,4,10,14,16

III. Pythagorean Theorem (p.435):

$$
\underline{\mathbf{a}^{2}}+\underline{\mathbf{b}^{2}}=\underline{\mathbf{c}^{2}}
$$

IV. Example (p.438): Problems \#18,20,tv-screen* V. Application Example (p.440): Problem \#28

HW: pp.438-440/Problems\#1,7,9,11,13,15,17,19,

$$
25,27,31,37,41
$$

*Show that the screen-size of each of the two following televisions is 32 ".
Use the dimensions (width \& height) for each tv as shown in the illustration...

TOTAL AREA $25.6 \times 19.2=491.52$ aquare inches TOTAL AREA $28 \times 15.7=439.6$ square inches As we can $6 e \theta$ in the example above, the "olt" 32 -hch TV has 491.52 squara Inches of screen area, and the 32-Inch HDTV has 439.6 square inches - in other wards, less. When comparing an "old" TV and HDTV of the same diagonal screen size, the HDTV screen is actually 11 percent smaller. This is true whether comparing 32-, 42, 50- or 60-inch screens: A 60Hnch HDTV screen is 11 percent smaller than your old 60-inch non-HD projection screen. To make sure your HDTV has the same screen area as your old TV. it needs to have a diagonal measure ("screen size") that's six percent bigger. (Why not 11 percent? The math Involyes logarithms and square roots - I.e. Pyihagorean geometry, not simple multipication. Trust us on this.) In other words take the dingonal screen size of the old TV and multiply by 1.06. If you have a 32 -Inch regutar TV. this means the HDTV needs a 34 -Inch screen if you don't want your new TV plcture to be smaller than the old one (32 times 1.08 equals 34). But this is not the whole story, especially when it comes to watching 'drd' TV shows on your new HDTV.

