I. Factoring Checklist (p.417):

1. Common factor?
use the distributive property, $\mathrm{ax} \pm \mathrm{ay}=\mathrm{a}(\boldsymbol{x} \pm \boldsymbol{y})$
2. Binomial?

Difference of 2 squares, $\mathrm{a}^{2}-\mathrm{b}^{2}=\left(\right.$ _ $^{+} \quad$) (_-_)
Sum of 2 squares, $\mathrm{a}^{2}+\mathrm{b}^{2}$ is prime (i.e., not \qquad
Sum or difference of 2 cubes,

$$
\mathrm{a}^{3} \pm \mathrm{b}^{3}=(\mathrm{a} \pm \mathrm{b})\left(\mathrm{a}^{2} \mp \mathrm{ab}+\mathrm{b}^{2}\right)
$$

3. Trinomial?
i. $x^{2}+b x+c=(x+m)(x+n)$
$\mathrm{m} \& \mathrm{n}$ are factors of "c" whose sum is "b"
ii. $\boldsymbol{a x}^{2}+\mathrm{b} \boldsymbol{x}+\mathrm{c}=(\mathrm{p} \boldsymbol{x}+\mathrm{m})(\mathrm{r} \boldsymbol{x}+\mathrm{n})$
reverse the FOIL method...
factor "a" \& "c" to obtain First \& Last products then check the middle term $\mathrm{b}=\mathbf{O}$ utside + Inside
I. Factoring Checklist (continued):
4. Four (or more) terms use group factoring, not covered (6.1/p.388)
II. Examples (p.420): Problems \#2,6,16,20,32,38
III. More Examples (pp.420-421):Problems \#14,26, 48,58,72,74

HW: pp.420-421 / Problems \#1,3,5,7,11,13,19,25,

$$
\begin{array}{r}
31,35,37,39,47,53 \\
57,61,69,71,73
\end{array}
$$

Read pp.423-427 (section 6.6)

