I. Factor: $\mathrm{a} \boldsymbol{x}^{2}+\mathrm{b} \boldsymbol{x}+\mathrm{c}$ (when $\mathbf{a}=\mathbf{1}$, see section 6.2)
II. Factor: $\mathrm{a} \boldsymbol{x}^{2}+\mathrm{b} \boldsymbol{x}+\mathrm{c}$ (when $\mathbf{a} \neq \mathbf{1}$, see section 6.3)
$a x^{2}+b x+c=(p x+m)(r x+n)$
find four numbers $m, n, p \& q$
such that: $\mathrm{pr}=\mathrm{a}, \mathrm{np}+\mathrm{mr}=\mathrm{b} \& \mathrm{mn}=\mathrm{c}$

$$
\mathrm{F} \quad \mathrm{O}+\mathrm{I}
$$

L
e.g., factor " $6 x^{2}+17 x+12$ "
$\mathrm{a}=$ \qquad , $b=$ \qquad , $\mathrm{c}=$ \qquad
factors of 6 are \qquad
\qquad , \qquad and \qquad
factors of 12 are \qquad , \qquad
\qquad
\qquad ,___ and \qquad need to find four numbers/factors such that... $\mathrm{p} \cdot \mathrm{r}=6, \mathrm{~m} \cdot \mathrm{n}=12$ and $\mathrm{n} \cdot \mathrm{p}+\mathrm{m} \cdot \mathrm{r}=$ try $(2 x+m)(3 x+n)$ with $m=$ \qquad and $\mathrm{n}=$ \qquad FOIL $(2 x+3)(3 x+4)=6 x^{2}+$ \qquad
III. Examples (p.406): Problems \#2,8,10,16,24,34,

$$
36,40,42
$$

IV. Application (p.407): Problem \#66

HW: pp.406-407 / Problems \#1-13(every other odd), 19,29,31,35,39-51(odd),61,63,65
Read pp.409-413 (section 6.4)

