I. Factoring:

To "factor" an expression completely means to write it as a product of its (prime*) factors...

$$
\text { e.g., } \quad \mathbf{3 0}=\mathbf{2 \cdot 3 \cdot 5} \text { or } \mathbf{6 x}+\underset{\text { see section } 1.6(\text { p. } 59)}{\mathbf{1 2}=\mathbf{6}(\boldsymbol{x}+\mathbf{2})}
$$

II. Greatest Common Factor (p.385):

1. Definition: A common factor is a factor common to every term in the expression...
2. $\mathbf{a b}+\mathbf{a c}-\mathbf{a d}=\mathbf{a}(\mathrm{b}+\mathrm{c}-\mathrm{d})$
i.e., the Distributive Property (but applied in reverse fashion)
3. Examples (p.390): Problems\#2,4,8,10,16,22
IV. Group Factoring (p.388):
4. Examples (p.391): Problems \#64,66
5. Not covered on any quiz/exam...
i.e., Problems\#43-56 (pp.390-391) will not be covered

HW: p. 390 / Problems\#1,3,7,9,11,15,19,21,29,33, 63,65
Read pp.395-398 (section 6.2)

I. Factoring Trinomials, Part 1:

1. $(\boldsymbol{x}+\mathrm{m})(\boldsymbol{x}+\mathrm{n})=\boldsymbol{x}^{2}+\boldsymbol{x} \cdot \mathrm{n}+\mathrm{m} \cdot \boldsymbol{x}+\mathrm{m} \cdot \mathrm{n}$

$$
=x^{2}+\mathrm{n} \boldsymbol{x}+\mathrm{m} \boldsymbol{x}+\mathrm{mn}
$$

$$
=x^{2}+(n+m) x+m n
$$

$$
=\boldsymbol{x}^{2}+(\mathrm{m}+\mathrm{n}) \boldsymbol{x}+\mathrm{mn}
$$

$$
=\boldsymbol{x}^{2}+\mathrm{b} \boldsymbol{x}+\mathrm{c}
$$

$$
\text { provided: } \mathrm{b}=\mathrm{m}+\mathrm{n} \& \mathrm{c}=\mathrm{m} \cdot \mathrm{n}
$$

2. Find two numbers, $m \& n$ whose sum is " b " and whose product is "c."
3. Factor $\boldsymbol{x}^{2}+5 \boldsymbol{x}+4$ as $(\boldsymbol{x}+\mathrm{m})(\boldsymbol{x}+\mathrm{n})$

$$
\text { need } \mathrm{m}+\mathrm{n}=5 \& 4=\mathrm{m} \cdot \mathrm{n}
$$

$$
\text { i.e., } \quad \mathrm{m}=1 \& \mathrm{n}=4
$$

$$
\therefore x^{2}+5 x+4=(x+1)(x+4)
$$

II. Examples (p.399): Problems \#2-26(even),42,62

HW: p. 399 / Exercises \#1-25(every otherodd),41,45, 47,61,63
Read pp.395-398 (section 6.2)

