Systems of Linear Equations

I. Introduction –

1. General Form:

 \[a_1x + b_1y = c_1 \]
 \[a_2x + b_2y = c_2 \]

 where \(a_i, b_i, \) and \(c_i \) are (real no.) constants

2. Example:

 \[2x + y = 4 \]
 \[x - y = 5 \]

III. Methods for Solving –

1. Graphing (4.1)
2. Elimination (4.2), a.k.a. the addition method
3. Substitution (4.3)
I. Graph the Equations...

Let \(L_1: a_1x + b_1y = c_1 \)
\(L_2: a_2x + b_2y = c_2 \)

II. Point of Intersection:

The point \(P(x_1, y_1) \) lies on both lines, therefore \((x_1, y_1) \) is a solution to both equations; \(i.e. \), the 2 numbers \(x_1 \) & \(y_1 \) are considered to be the “solution” to the system of equations...

III. Examples (p.273): Problems #6, 22, 24, 28
IV. The Three (3) Possibilities:

1. A Unique Solution...

Two equations represent two distinct lines intersecting at the point \(P(x_1, y_1) \).

2. No Solution...

Two equations represent two parallel lines... (\(i.e. \), there is no point of intersection)

“Inconsistent” system
IV. 3. Infinite # of Solutions...

Two equations represent only one line (note: every point on the satisfies both equations)

“Dependent” system

whose solutions are of the form...

\((x, mx + b)\) where \(x\) is any real #

V. Examples (p.273): Problems #30,32

HW: pp.273-276 / Problems #1,5,11,17,25,27,29, 31,43,45

Read pp.277-283 (section 4.2)