Systems of Linear Equations

I. Introduction -

1. General Form:

$$
\begin{aligned}
& \mathbf{a}_{1} x+\mathbf{b}_{1} y=\mathbf{c}_{1} \\
& \mathbf{a}_{2} x+\mathbf{b}_{2} y=\mathbf{c}_{2} \\
& \text { where } \mathbf{a}_{\mathrm{i}}, b_{i} \text {, and } \mathbf{c}_{\mathrm{i}} \text { are (real no.) constants }
\end{aligned}
$$

2. Example:

$$
\begin{aligned}
& 2 x+y=4 \\
& a_{1}=\ldots \quad b_{1}=\ldots \quad c_{1}= \\
& \begin{array}{lll}
x-y=5 & \mathbf{a}_{2}=\ldots \quad b_{2}=\ldots \quad \mathbf{c}_{2}=\ldots
\end{array}
\end{aligned}
$$

II. Solutions -

1. Definition: A "solution" is an ordered pair of numbers $(\boldsymbol{x}, \boldsymbol{y})$ which make both of the equations in the system true.
2. $(3,-2)$ is a solution to the system

$$
\begin{aligned}
2 \boldsymbol{x}+\boldsymbol{y} & =4 \\
\boldsymbol{x}-\boldsymbol{y} & =5 \\
\text { since } 2 \cdot 3 & +(-2)=4 \text { and } 3-(-2)=5
\end{aligned}
$$

3. Example (p.273) / Problem \#2
III. Methods for Solving -
4. Graphing (4.1)
5. Elimination (4.2), a.k.a. the addition method
6. Substitution (4.3)
I. Graph the Equations...

$$
\begin{array}{ll}
\mathrm{L}_{1}: & \mathrm{a}_{1} x+\mathrm{b}_{1} y=\mathrm{c}_{1} \\
\mathrm{~L}_{2}: & \mathrm{a}_{2} x+\mathrm{b}_{2} y=\mathrm{c}_{2}
\end{array}
$$

II. Point of Intersection:

The point $\mathrm{P}\left(x_{1}, y_{1}\right)$ lies on both lines, therefore $\left(x_{1}, y_{1}\right)$ is a solution to both equations; i.e., the 2 numbers $x_{1} \& y_{1}$ are considered to be the "solution" to the system of equations...
III. Examples (p.273): Problems \#6,22,24,28

IV. The Three (3) Possibilities:

1. A Unique Solution...

Two equations represent two distinct lines intersecting at the point $\mathrm{P}\left(x_{1}, y_{1}\right)$.

2. No Solution...

Two equations represent two parallel lines... (i.e., there is no point of intersection)
"Inconsistent" system

IV. 3. Infinite \# of Solutions... Two equations represent only one line (note: every point on the satisfies both equations)
"Dependent" system
 whose solutions are of the form... $(x, m x+b)$ where x is any real \#
V. Examples (p.273): Problems \#30,32

HW: pp.273-276 / Problems \#1,5,11,17,25,27,29,
31,43,45
Read pp.277-283 (section 4.2)

