Systems of Linear Equations

- I. Introduction
 - 1. General Form:

$$\mathbf{a}_1 x + \mathbf{b}_1 y = \mathbf{c}_1$$

 $\mathbf{a}_2 x + \mathbf{b}_2 y = \mathbf{c}_2$
where \mathbf{a}_i , \mathbf{b}_i , and \mathbf{c}_i are (real no.) constants

2. Example:

$$2x + y = 4$$
 $a_1 = __ b_1 = __ c_1 = __ $x - y = 5$ $a_2 = __ b_2 = __ c_2 = __$$

- II. Solutions
 - 1. Definition: A "solution" is an ordered pair of numbers (x,y) which make both of the equations in the system true.
 - 2. (3,-2) is a solution to the system

$$2x + y = 4$$

 $x - y = 5$
since $2 \cdot 3 + (-2) = 4$ and $3 - (-2) = 5$

3. Example (p.273) / Problem #2

III. Methods for Solving –

- 1. Graphing (4.1)
- 2. Elimination (4.2), a.k.a. the addition method
- 3. Substitution (4.3)

Graph the Equations...

L₁: $a_1 x + b_1 y = c_1$ L₂: $a_2 x + b_2 y = c_2$

Point of Intersection:

The point $P(x_1,y_1)$ lies on both lines, therefore (x_1,y_1) is a solution to both equations; i.e., the 2 numbers $x_1 \& y_1$ are considered to be the "solution" to the system of equations...

III. Examples (p.273): Problems #6,22,**24**,28

IV. The Three (3) Possibilities:

1. A Unique Solution...

Two equations represent two distinct lines intersecting at the point $P(x_1,y_1)$.

2. No Solution...

Two equations represent two parallel lines... (*i.e.*, there is no point of intersection)

"Inconsistent" system

IV. 3. Infinite # of Solutions...

Two equations represent only one line (note: every point on the satisfies both equations)

"Dependent" system

whose solutions are of the form...

(x, mx+b) where x is any real #

V. Examples (p.273): Problems #30,32

HW: pp.273-276 / Problems #1,5,11,17,25,27,29, 31,43,45

Read pp.277-283 (section 4.2)