III. Anomalous Lines, Part 2 (p.224):

1.(i) Horizontal Line...
y-intercept: $(0, b)$
\boldsymbol{x}-intercept: none equation form, $\boldsymbol{y}=\mathrm{b}$ slope: $\mathbf{m}=\mathbf{0}$
(ii) Vertical Line...
\boldsymbol{y}-intercept: none
\boldsymbol{x}-intercept: $(\mathrm{a}, 0)$ equation form, $\boldsymbol{x}=\mathrm{a}$ slope: m is "undefined"

2. Example (p.228): \#44
IV. Parallel Lines (p.225): for any two distinct lines, $l_{1} \& l_{2}$

$$
l_{1} \| l_{2} \Leftrightarrow \mathrm{~m}_{1}=\mathrm{m}_{2}
$$

i.e., parallel lines have the same slope...

V. Perpendicular Lines (p.225): for any two non-vertical lines, $l_{1} \& l_{2}$
$l_{1} \perp l_{2} \leftrightarrow \underset{\text { spmberis man }}{\mathrm{m}_{1}}=-1 / \mathrm{m}_{2}$
i.e., perpendicular lines have slopes
 that are "negative reciprocals" $\left(m_{1} \cdot m_{2}=-1\right) \ldots$
VI. Examples (p.228): \#50,58

HW: pp.227-228 / \#3-43(every other odd),45-59(odd) Read pp.233-238 (section 3.5)

I. Equation Forms for Lines, Part I:

$$
\text { 1. } \mathrm{A} \boldsymbol{x}+\mathrm{B} \boldsymbol{y}=\mathrm{C} \quad \text { Standard form }
$$

2. $\boldsymbol{y}=\mathrm{m} \boldsymbol{x}+\mathrm{b} \quad$ Slope-intercept form where... $\mathrm{m}=$ slope \& $(0, \mathrm{~b})$ is the y-intercept
II. Examples (pp.239-240): Problems \#6,12,14,16,30

HW: pp.239-240 / Exercises \#1-37 (every other odd) Read pp.243-246 (section 3.6)

