I. The \boldsymbol{x} - and \boldsymbol{y}-intercepts (p.209):

A typical line will intersect both the \boldsymbol{x} - and \boldsymbol{y}-axes once. The point at which the graph crosses the \boldsymbol{x}-axis is called the \boldsymbol{x}-intercept, while the point where the graph crosses the \boldsymbol{y}-axis is known as the \boldsymbol{y}-intercept...

...to find these two points...
Let $\boldsymbol{x}=0$ in the equation, solve for $\boldsymbol{y}=\mathrm{b}$, then let $\boldsymbol{y}=0$ in the equation, solve for $\boldsymbol{x}=\mathrm{a}$.

\boldsymbol{x}	\boldsymbol{y}
0	b
a	0

II. Examples (pp.214-216): \#2,10,20,36,38,40,44

HW: pp.214-217 / \#3-39(every other odd),43-57(odd)

I. Slope of a Line (p.220):

How steep a line is tilted or inclined is indicated by a quantity known as the slope of the line. It is frequently designated by the letter " m " and is defined as follows... For any two points on a line, $\mathrm{P}_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{v}_{1}\right) \& \mathrm{P}_{\rho}\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$, its slope is given by the formula, $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ "an "risese" "runt" (vericied change)

II. Examples (p.227): \#2,8,14,34

HW: p. 227 / \#1-33(every other odd) Read pp.219-226 (section 3.4)

