I. Linear Equations -

1. in one variable: $\mathrm{A} \boldsymbol{x}+\mathrm{B}=\mathrm{C}$

$$
\begin{aligned}
& \text { e.g., } 2 x+5=-7 \\
& \qquad x=-6 \text { is the (only) solution }
\end{aligned}
$$

2. in two variables (p.199): $\mathrm{A} \boldsymbol{x}+\mathrm{B} \boldsymbol{y}=\mathrm{C}$

$$
\text { e.g., } 2 x+5 y=-7
$$

$\boldsymbol{x}=-6 \& \boldsymbol{y}=1$ is one solution (of infinitely many)
This solution may be expressed as the "ordered pair" $(-6,1)$; other solutions include $(4,-3),(-11,3),\left(-3^{1 ⁄ 2}, 0\right)$, etc.
II. Examples (p.204): Exercises \#2,4,8,12,16,26
III. Graphing $\mathrm{A} \boldsymbol{x}+\mathrm{B} \boldsymbol{y}=\mathrm{C}$:

Find and plot enough ordered pair solutions until you recognize the "pattern" (or shape) represented by the plotted points...
IV. Examples (pp.204-205): Exercises \#28,38
V. Two Anomalous Lines (p.203):
(i) Horizontal Line
y-intercept: $(0, b)$
\boldsymbol{x}-intercept: none
Equation form, $\boldsymbol{y}=\mathrm{b}$
(ii) Vertical Line
y-intercept: none
\boldsymbol{x}-intercept: $(\mathrm{a}, 0)$

Equation form, $\boldsymbol{x}=\mathrm{a}$

VI. Examples (p.205): Exercises \#58,60

HW: pp.204-206/\#1-35(odd),41,47,53,57-69(odd), 73
Read pp.209-213 (section 3.3)

