I. General Form: $\mathbf{a x}+\mathbf{b} \geq \mathbf{c}$
where \mathbf{a}, \mathbf{b} and \mathbf{c} are constants $(\leq,<$ or $>$ are also possible)

$$
e . g ., \quad 2 \boldsymbol{x}+5<13 \quad(\mathbf{a}=2, \mathbf{b}=5, \mathbf{c}=13)
$$

II. Method for Solving:

Manipulate (,,$+- \times$ and/or \div) the inequality as if it were an equation in order to isolate the variable on one side; EXCEPT - REVERSE the inequality SIGN whenever MULTIPLYING (or DIVIDING) by a NEGATIVE \#

$$
\text { e.g., } \quad 2 \boldsymbol{x}+5<13
$$

$2 x<8$ after subtracting 5
$\boldsymbol{x}<4$ after dividing by 2
Note the solution is ALL numbers less than 4
(i.e., an infinite set of numbers)
III. Graphing \& Inequality Notation (p.167):

$$
\boldsymbol{x}<\mathrm{a} \quad \text { or } \quad \boldsymbol{x} \geq \mathrm{b}
$$

IV. Examples (p.174): Problems \#2-58(even)

HW: p.174: Problems \#1-57(every other odd)
I. Rectangular Coordinate System (2-dimensional): \boldsymbol{x}-axis: horizontal number line \boldsymbol{y}-axis: vertical number line

$\mathrm{P}_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right) \Leftrightarrow$ coordinates of point P_{1} are $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)$
II. Examples (p.188): \#2-28(even)

III. The Origin \& 4 Quadrants...

coordinates for the "origin" are (__, ___)
IV. Scatter diagram v. line graph (p.184): 1. see Figure 2 \& Figure 3
2. Example (p.190): \#48
V. Miscellaneous (p.192): \#54

HW: pp.188-193 / \#1-29(every other odd),45,49,51, 53,57
Read pp.195-203 (section 3.2)

