I. Arithmetic Properties:

1. $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$
$\mathrm{a} \times \mathrm{b}=\mathrm{b} \times \mathrm{a}$
2. $(a+b)+c=a+(b+c)$
$(\mathrm{a} \times \mathrm{b}) \times \mathrm{c}=\mathrm{a} \times(\mathrm{b} \times \mathrm{c})$
3. $a+0=$
$a \times 1=$ \qquad
4. $a+(-a)=$
$\mathrm{a} \times 1 / \mathrm{a}=$
5. Distributive Property (p.79): ¡Muy importante!

$$
a(b \pm c)=a b \pm a c
$$

6. Exercises (pp.84-85): Problems\#22-30(even),52,72,82,
II. Misc. Exercises (p.85): Problems\#94,112,124

HW: pp.84-85 / Problems \#21-29(odd),
41-121(every other odd)

I. Terms in an Expression:

1. Terms (p.113): the parts of a mathematical expression separated by a " + " sign e.g., $2 \boldsymbol{x}+5$ has ___ terms

$$
3 x^{2}+x-4.6 \text { has } \quad \text { terms }
$$

2. Like Terms (p.93): terms with identical variable(s) and exponents are "like terms" (or similar terms)...

e.g.,	$\quad 6 \boldsymbol{x} \& 2 \boldsymbol{x}$ are like terms
	$-3 \boldsymbol{x}^{2} \& 0.2 \boldsymbol{x}^{2}$ are like terms
however, $-3 \boldsymbol{x}^{2} \& 2 \boldsymbol{x}$ are NOT like terms...	

II. Like terms may be combined (i.e., simplified using either \pm), while unlike terms cannot...

$$
\begin{array}{ll}
\text { e.g., } & 6 x+2 x= \\
& -3 x^{2}-0.2 x^{2}= \\
& -3 x^{2}+2 x
\end{array}
$$

\qquad
note: the constants $6,2,-3,-0.2$, etc. are known as \qquad
III. Examples (p.99): Problems \#2-72(even)

HW: pp.99-101 / Exercises \#3-71 (every other odd) Read section 2.2 (pp.103-107)

